* Step 1: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            div(0(),s(Y)) -> 0()
            div(s(X),s(Y)) -> if(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            geq(X,0()) -> true()
            geq(0(),s(Y)) -> false()
            geq(s(X),s(Y)) -> geq(X,Y)
            if(false(),X,Y) -> Y
            if(true(),X,Y) -> X
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div,geq,if,minus} and constructors {0,false,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          div#(0(),s(Y)) -> c_1()
          div#(s(X),s(Y)) -> c_2(if#(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
                                ,geq#(X,Y)
                                ,div#(minus(X,Y),s(Y))
                                ,minus#(X,Y))
          geq#(X,0()) -> c_3()
          geq#(0(),s(Y)) -> c_4()
          geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
          if#(false(),X,Y) -> c_6()
          if#(true(),X,Y) -> c_7()
          minus#(0(),Y) -> c_8()
          minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(0(),s(Y)) -> c_1()
            div#(s(X),s(Y)) -> c_2(if#(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
                                  ,geq#(X,Y)
                                  ,div#(minus(X,Y),s(Y))
                                  ,minus#(X,Y))
            geq#(X,0()) -> c_3()
            geq#(0(),s(Y)) -> c_4()
            geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
            if#(false(),X,Y) -> c_6()
            if#(true(),X,Y) -> c_7()
            minus#(0(),Y) -> c_8()
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            div(0(),s(Y)) -> 0()
            div(s(X),s(Y)) -> if(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            geq(X,0()) -> true()
            geq(0(),s(Y)) -> false()
            geq(s(X),s(Y)) -> geq(X,Y)
            if(false(),X,Y) -> Y
            if(true(),X,Y) -> X
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/4,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,4,6,7,8}
        by application of
          Pre({1,3,4,6,7,8}) = {2,5,9}.
        Here rules are labelled as follows:
          1: div#(0(),s(Y)) -> c_1()
          2: div#(s(X),s(Y)) -> c_2(if#(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
                                   ,geq#(X,Y)
                                   ,div#(minus(X,Y),s(Y))
                                   ,minus#(X,Y))
          3: geq#(X,0()) -> c_3()
          4: geq#(0(),s(Y)) -> c_4()
          5: geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
          6: if#(false(),X,Y) -> c_6()
          7: if#(true(),X,Y) -> c_7()
          8: minus#(0(),Y) -> c_8()
          9: minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
* Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(if#(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
                                  ,geq#(X,Y)
                                  ,div#(minus(X,Y),s(Y))
                                  ,minus#(X,Y))
            geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak DPs:
            div#(0(),s(Y)) -> c_1()
            geq#(X,0()) -> c_3()
            geq#(0(),s(Y)) -> c_4()
            if#(false(),X,Y) -> c_6()
            if#(true(),X,Y) -> c_7()
            minus#(0(),Y) -> c_8()
        - Weak TRS:
            div(0(),s(Y)) -> 0()
            div(s(X),s(Y)) -> if(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            geq(X,0()) -> true()
            geq(0(),s(Y)) -> false()
            geq(s(X),s(Y)) -> geq(X,Y)
            if(false(),X,Y) -> Y
            if(true(),X,Y) -> X
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/4,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:div#(s(X),s(Y)) -> c_2(if#(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
                                    ,geq#(X,Y)
                                    ,div#(minus(X,Y),s(Y))
                                    ,minus#(X,Y))
             -->_4 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):3
             -->_2 geq#(s(X),s(Y)) -> c_5(geq#(X,Y)):2
             -->_4 minus#(0(),Y) -> c_8():9
             -->_1 if#(true(),X,Y) -> c_7():8
             -->_1 if#(false(),X,Y) -> c_6():7
             -->_2 geq#(0(),s(Y)) -> c_4():6
             -->_2 geq#(X,0()) -> c_3():5
             -->_3 div#(0(),s(Y)) -> c_1():4
             -->_3 div#(s(X),s(Y)) -> c_2(if#(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
                                         ,geq#(X,Y)
                                         ,div#(minus(X,Y),s(Y))
                                         ,minus#(X,Y)):1
          
          2:S:geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
             -->_1 geq#(0(),s(Y)) -> c_4():6
             -->_1 geq#(X,0()) -> c_3():5
             -->_1 geq#(s(X),s(Y)) -> c_5(geq#(X,Y)):2
          
          3:S:minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
             -->_1 minus#(0(),Y) -> c_8():9
             -->_1 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):3
          
          4:W:div#(0(),s(Y)) -> c_1()
             
          
          5:W:geq#(X,0()) -> c_3()
             
          
          6:W:geq#(0(),s(Y)) -> c_4()
             
          
          7:W:if#(false(),X,Y) -> c_6()
             
          
          8:W:if#(true(),X,Y) -> c_7()
             
          
          9:W:minus#(0(),Y) -> c_8()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: div#(0(),s(Y)) -> c_1()
          7: if#(false(),X,Y) -> c_6()
          8: if#(true(),X,Y) -> c_7()
          5: geq#(X,0()) -> c_3()
          6: geq#(0(),s(Y)) -> c_4()
          9: minus#(0(),Y) -> c_8()
* Step 4: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(if#(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
                                  ,geq#(X,Y)
                                  ,div#(minus(X,Y),s(Y))
                                  ,minus#(X,Y))
            geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            div(0(),s(Y)) -> 0()
            div(s(X),s(Y)) -> if(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            geq(X,0()) -> true()
            geq(0(),s(Y)) -> false()
            geq(s(X),s(Y)) -> geq(X,Y)
            if(false(),X,Y) -> Y
            if(true(),X,Y) -> X
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/4,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:div#(s(X),s(Y)) -> c_2(if#(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
                                    ,geq#(X,Y)
                                    ,div#(minus(X,Y),s(Y))
                                    ,minus#(X,Y))
             -->_4 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):3
             -->_2 geq#(s(X),s(Y)) -> c_5(geq#(X,Y)):2
             -->_3 div#(s(X),s(Y)) -> c_2(if#(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
                                         ,geq#(X,Y)
                                         ,div#(minus(X,Y),s(Y))
                                         ,minus#(X,Y)):1
          
          2:S:geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
             -->_1 geq#(s(X),s(Y)) -> c_5(geq#(X,Y)):2
          
          3:S:minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
             -->_1 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):3
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
* Step 5: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
            geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            div(0(),s(Y)) -> 0()
            div(s(X),s(Y)) -> if(geq(X,Y),s(div(minus(X,Y),s(Y))),0())
            geq(X,0()) -> true()
            geq(0(),s(Y)) -> false()
            geq(s(X),s(Y)) -> geq(X,Y)
            if(false(),X,Y) -> Y
            if(true(),X,Y) -> X
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          minus(0(),Y) -> 0()
          minus(s(X),s(Y)) -> minus(X,Y)
          div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
          geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
          minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
* Step 6: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
            geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
          
        The strictly oriented rules are moved into the weak component.
** Step 6.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
            geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1,2,3},
          uargs(c_5) = {1},
          uargs(c_9) = {1}
        
        Following symbols are considered usable:
          {minus,div#,geq#,if#,minus#}
        TcT has computed the following interpretation:
               p(0) = [0]                            
             p(div) = [1] x1 + [0]                   
           p(false) = [1]                            
             p(geq) = [8] x1 + [2] x2 + [0]          
              p(if) = [1] x1 + [1] x2 + [0]          
           p(minus) = [0]                            
               p(s) = [1] x1 + [2]                   
            p(true) = [2]                            
            p(div#) = [11] x1 + [4]                  
            p(geq#) = [4] x1 + [0]                   
             p(if#) = [0]                            
          p(minus#) = [0]                            
             p(c_1) = [0]                            
             p(c_2) = [2] x1 + [4] x2 + [1] x3 + [10]
             p(c_3) = [1]                            
             p(c_4) = [1]                            
             p(c_5) = [1] x1 + [0]                   
             p(c_6) = [1]                            
             p(c_7) = [4]                            
             p(c_8) = [2]                            
             p(c_9) = [8] x1 + [0]                   
        
        Following rules are strictly oriented:
        geq#(s(X),s(Y)) = [4] X + [8]   
                        > [4] X + [0]   
                        = c_5(geq#(X,Y))
        
        
        Following rules are (at-least) weakly oriented:
          div#(s(X),s(Y)) =  [11] X + [26]                                   
                          >= [8] X + [26]                                    
                          =  c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
        
        minus#(s(X),s(Y)) =  [0]                                             
                          >= [0]                                             
                          =  c_9(minus#(X,Y))                                
        
             minus(0(),Y) =  [0]                                             
                          >= [0]                                             
                          =  0()                                             
        
         minus(s(X),s(Y)) =  [0]                                             
                          >= [0]                                             
                          =  minus(X,Y)                                      
        
** Step 6.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak DPs:
            geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak DPs:
            geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
             -->_1 geq#(s(X),s(Y)) -> c_5(geq#(X,Y)):3
             -->_3 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):2
             -->_2 div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y)):1
          
          2:S:minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
             -->_1 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):2
          
          3:W:geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
             -->_1 geq#(s(X),s(Y)) -> c_5(geq#(X,Y)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: geq#(s(X),s(Y)) -> c_5(geq#(X,Y))
** Step 6.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/3,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y))
             -->_3 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):2
             -->_2 div#(s(X),s(Y)) -> c_2(geq#(X,Y),div#(minus(X,Y),s(Y)),minus#(X,Y)):1
          
          2:S:minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
             -->_1 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          div#(s(X),s(Y)) -> c_2(div#(minus(X,Y),s(Y)),minus#(X,Y))
** Step 6.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(div#(minus(X,Y),s(Y)),minus#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: div#(s(X),s(Y)) -> c_2(div#(minus(X,Y),s(Y)),minus#(X,Y))
          2: minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
          
        The strictly oriented rules are moved into the weak component.
*** Step 6.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            div#(s(X),s(Y)) -> c_2(div#(minus(X,Y),s(Y)),minus#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_9) = {1}
        
        Following symbols are considered usable:
          {minus,div#,geq#,if#,minus#}
        TcT has computed the following interpretation:
               p(0) = [0]                           
             p(div) = [1] x1 + [0]                  
           p(false) = [2]                           
             p(geq) = [1] x1 + [2]                  
              p(if) = [1] x1 + [0]                  
           p(minus) = [0]                           
               p(s) = [1] x1 + [6]                  
            p(true) = [0]                           
            p(div#) = [5] x1 + [0]                  
            p(geq#) = [1] x1 + [1] x2 + [2]         
             p(if#) = [1] x1 + [2] x2 + [8] x3 + [2]
          p(minus#) = [2] x1 + [1]                  
             p(c_1) = [8]                           
             p(c_2) = [8] x1 + [2] x2 + [14]        
             p(c_3) = [4]                           
             p(c_4) = [0]                           
             p(c_5) = [1] x1 + [4]                  
             p(c_6) = [0]                           
             p(c_7) = [1]                           
             p(c_8) = [1]                           
             p(c_9) = [1] x1 + [10]                 
        
        Following rules are strictly oriented:
          div#(s(X),s(Y)) = [5] X + [30]                          
                          > [4] X + [16]                          
                          = c_2(div#(minus(X,Y),s(Y)),minus#(X,Y))
        
        minus#(s(X),s(Y)) = [2] X + [13]                          
                          > [2] X + [11]                          
                          = c_9(minus#(X,Y))                      
        
        
        Following rules are (at-least) weakly oriented:
            minus(0(),Y) =  [0]       
                         >= [0]       
                         =  0()       
        
        minus(s(X),s(Y)) =  [0]       
                         >= [0]       
                         =  minus(X,Y)
        
*** Step 6.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            div#(s(X),s(Y)) -> c_2(div#(minus(X,Y),s(Y)),minus#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            div#(s(X),s(Y)) -> c_2(div#(minus(X,Y),s(Y)),minus#(X,Y))
            minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:div#(s(X),s(Y)) -> c_2(div#(minus(X,Y),s(Y)),minus#(X,Y))
             -->_2 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):2
             -->_1 div#(s(X),s(Y)) -> c_2(div#(minus(X,Y),s(Y)),minus#(X,Y)):1
          
          2:W:minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
             -->_1 minus#(s(X),s(Y)) -> c_9(minus#(X,Y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: div#(s(X),s(Y)) -> c_2(div#(minus(X,Y),s(Y)),minus#(X,Y))
          2: minus#(s(X),s(Y)) -> c_9(minus#(X,Y))
*** Step 6.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            minus(0(),Y) -> 0()
            minus(s(X),s(Y)) -> minus(X,Y)
        - Signature:
            {div/2,geq/2,if/3,minus/2,div#/2,geq#/2,if#/3,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/2,c_3/0,c_4/0
            ,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {div#,geq#,if#,minus#} and constructors {0,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))